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A ring means an associative ring with unit. For a

ring R, R+ denotes the additive group of R. The

unit group of R is denoted by U(R). The Jacobson

radical of R is denoted by J(R).

Yasuyuki Hirano in [Rings with finitely many orbits

under the regular action, Lecture Notes in Pure and

Appl. Math. 236, Dekker, New York 2004, 343–

347] concentrated on the left regular group action

of U(R) on R+ defined by

a ⇀ x = ax

for all a ∈ U(R), x ∈ R.
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Theorem (Hirano). For a ring R, the following con-

ditions are equivalent:

1. R has only a finite number of orbits under the

left regular group action of U(R) on R+.

2. R has only a finite number of left ideals.

3. R is the direct sum of a finite ring and a fi-

nite number of left uniserial rings (that is, rings

which left ideals form a finite chain).

If any of these conditions holds, then R is a left

artinian ring. More precisely, R is the direct sum

of a finite ring and a finite number of principal left

ideal left artinian rings.

We will see later that a ring satisfying conditions

of the Hirano Theorem need not be right artinian.
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We concentrate on the two-sided regular group ac-

tion of U(R)× U(R) on R+ defined by

(a, b) ⇀ x = axb−1, (1)

for all a, b ∈ U(R), x ∈ R.

The action (1) induces an action of the group

U(R) × U(R) on each of the following sets: the

set of elements of R, of principal left ideals of R,

of left ideals of R, and of ideals of R, however the

action on the latter set is trivial. Orbits under the

action (1) are called simply U-orbits.
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We introduce the following properties:

FNE R has only a finite number of U-orbits of

elements.

FNPLI R has only a finite number of U-orbits of

principal left ideals.

FNLI R has only a finite number of U-orbits of

left ideals.

FNI R has only a finite number of U-orbits of ide-

als (R has only a finite number of ideals).

For a ring R, the following connections between

the above properties holds:

FNE ⇒ FNPLI ⇒ FNI

and FNLI ⇒ FNPLI ⇒ FNI (2)
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Theorem. For a commutative ring R, the following

statements are equivalent:

1. R satisfies each of the properties listed in For-

mula (2).

2. R satisfies any of the properties listed in For-

mula (2).

3. R is the direct sum of a finite ring and a finite

number of principal ideal local artinian rings.

We will see later that in non-commutative case

the converse of the implications listed in Formula

(2) is not necessarily true. Although, accordingly

to [Jan Okniński, Lex E. Renner, Algebras with

finitely many orbits, J. Algebra 264 (2003), 479–

495], under the assumption on semiperfectness∗

of a ring, the property FNPLI implies the property

FNE.
∗A ring R is called semiperfect if R is semilocal (that is,
R/J(R) is semisimple artinian), and idempotents of R/J(R)
can be lifted to R.
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We discuss two questions:

∗ Must every left and/or right artinian ring sat-

isfy FNE or a similar property?

∗ Must every ring satisfying FNE or a similar

property be left and/or right artinian, or at

least semiprimary∗?

Theorem. Every semisimple artinian ring satisfies

all the properties listed in Formula (2).

∗A ring R is called semiprimary if R is semilocal, and J(R) is
nilpotent.
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Example. Let K be an infinite field, and let R =

K[x, y]/(x2, xy, y2) be the homomorphic image of

the polynomial ring in commuting variables x, y.

Then

∗ R is a 3-dimensional K-algebra.

∗ R has an infinite number of U-orbits of ideals.

∗ Under which conditions does a left and/or right

artinian ring satisfy FNE or a similar property?
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Theorem. Assume a ring R satisfies FNI. Then

1. P (R) is nilpotent, where P (R) denotes the

prime radical of R.

2. If R is left or right noetherian, then J(R) is

nilpotent.

3. If every prime image of R is simple artinian,

then R is semiprimary.

4. If R satisfies a polynomial identity, then R is

semiprimary.

Proof. The statement 1 follows from the definition

of the prime radical of R as the sum of a finite

number of nilpotent ideals.

The statement 2 follows from the Nakayama

Lemma.
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3. Let P1, P2, . . . , Pn be all prime ideals of R. By as-

sumption, the prime images R/P1, R/P2, . . . , R/Pn

of R are simple artinian, and hence P1, P2, . . . , Pn

are all maximal ideals of R. According to the Chi-

nese Remainder Theorem for rings, R/P (R) ∼=
R/P1 × R/P2 × . . . × R/Pn is a semisimple artinian

ring. Thus J(R) = P (R) is nilpotent, and R/J(R)

is semisimple artinian.

4. If R is a prime PI-ring satisfying FNI, then R is

a central prime PI-algebra, and according to the

Kaplansky Theorem, R is a simple artinian ring.

Let R be now an arbitrary PI-ring satisfying FNI.

From the statement 3, R is a semiprimary ring.
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Lemma. Assume a ring R satisfies FNPLI. Then

every one-sided nil-ideal of R is nilpotent of nilpo-

tency index not greater than n+1, where n denotes

the number of U-orbits of principal left ideals of R.

Proof. Let I be a one-sided nil-ideal of R.

Suppose that x1x2 · · ·xn+1 6= 0 for some

x1, x2, . . . , xn+1 ∈ I. Out of all the left ideals

Rx1, Rx1x2, . . . , Rx1x2 · · ·xn+1 of R at least two

belong to the same U-orbit, say Rx1x2 · · ·xi and

Rx1x2 · · ·xixi+1 · · ·xj. Set x = x1x2 · · ·xi and y =

xi+1 · · ·xj. Then x = rxyb−1 for some r ∈ R,

b ∈ U(R). By induction on m ≥ 1, x = rmx(yb−1)m.

But (yb−1)m = 0 for any sufficiently large m, which

contradicts x 6= 0.
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Theorem. Assume a ring R satisfies FNPLI. Then

R is semiprimary provided at least one of the fol-

lowing conditions is fulfilled:

1. R is semilocal, and J(R) is nil.

2. R satisfies ACC or DCC on principal left ideals.

Proof. The statement 1 follows from the previous

lemma.

2. If R does not satisfy DCC on principal left ideals,

then there exist left ideals Rx ( Ry of R belonging

to the same U-orbit, hence Rxb−1 = Ry for some

b ∈ U(R), and thus Rx ( Rxb−1 ( Rxb−2 ( . . .,

which means that R does not satisfy ACC on prin-

cipal left ideals, contrary to assumption. Thereby

R must satisfy DCC on principal left ideals. Ac-

cording to the Bass Theorem, R is right perfect∗.
In particular, R is semilocal, and J(R) is nil. From

the statement 1, R is a semiprimary ring.

∗A ring R is called right perfect if R is semilocal and J(R) is
right T-nilpotent.
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Jan Okniński and Lex E. Renner in [Algebras with
finitely many orbits, J. Algebra 264 (2003), 479–
495] conjectured that every ring satisfying FNLI is
semiprimary.

Theorem. Assume a ring R satisfies FNLI. Then R

is semilocal. Moreover, R is semiprimary provided
at least one of the following conditions is fulfilled:

1. J(R) is nil.

2. Every prime image of R is left bounded∗ (such
a ring R is called left fully bounded).

∗A ring R is called left bounded if every essential left ideal
of R contains a non-zero ideal of R.
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Proof. The semilocalness of R was in fact proved

by Jan Okniński and Lex E. Renner. Suppose that

there exists a strictly decreasing sequence of left

ideals M1 ) M1 ∩ M2 ) M1 ∩ M2 ∩ M3 ) . . . for

some maximal left ideals M1,M2, . . . of R. From

(M1 ∩ M2 ∩ . . . ∩ Mk)/(M1 ∩ M2 ∩ . . . ∩ Mk+1) ∼=
R/Mk+1 we see that R/(M1 ∩M2 ∩ . . . ∩Mn) is a

left R-module of length n, for every n ≥ 1. On the

other hand, there exist m 6= n for which left ideals

M1 ∩M2 ∩ . . . ∩Mm and M1 ∩M2 ∩ . . . ∩Mn belong

to the same U-orbit, and hence R/(M1∩M2∩ . . .∩
Mm) ∼= R/(M1 ∩M2 ∩ . . . ∩Mn) as left R-modules,

contrary to the Jordan-Hölder Theorem. Thereby

J(R) = M1∩M2∩ . . .∩Mn for some n ≥ 1, and thus

R/J(R) is a semisimple artinian ring.
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The statement 1 follows from the previous lemma.

2. Let R be a prime left bounded ring satisfying

FNLI. Let I be a minimal ideal of R, and let 0 6=
a ∈ I. Let M be a left ideal of R maximal with

respect to a 6∈M . Since every non-zero submodule

of R/M contains a+M , it follows that (M+Ra)/M

is a simple left R-module. On the other hand, by

assumption, M is a non-essential left ideal of R,

hence M ( M ⊕ N for some left ideal N of R,

and by maximality of M , M + Ra ⊆ M ⊕ N . Thus

(M +Ra)/M ⊆ (M ⊕N)/M ∼= N ⊆ R, which means

that R contains simple submodules (minimal left

ideals), say L1, L2, . . .. Out of all the left ideals

L1, L1⊕L2, . . . of R none two of them belong to the

same U-orbit. Thereby R has only a finite number

of minimal left ideals, and in consequence, is a

simple artinian ring. Let R be now an arbitrary left

fully bounded ring satisfying FNLI. From one of

the previous theorem, R is a semiprimary ring.
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Theorem. Let R be a semiprimary ring. Then R is
left artinian provided at least one of the following
conditions is fulfilled:

1. R satisfies FNLI.

2. J(R) is a finitely generated R-module.

3. R satisfies FNI, and is a finitely generated PI-
algebra over its center.

In particular, every ring satisfying both FNLI and
ACC or DCC on principal left ideals is left artinian.
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Example. Let L be a field, let F = L(x) be the

field of rational functions in one variable x, and

let σ : F → F be the L-endomorphism defined by

σ(x) = xn for some positive integer n ≥ 2. Let

R = F[y;σ]/(y2) be the homomorphic image of the

skew polynomial ring in one variable y. Then

∗ R is both left and right artinian.

∗ R has exactly three U-orbits of elements, of

principal left ideals, of left ideals, and of prin-

cipal right ideals.

∗ If n = 2 (respectively, n = 3), then R has ex-

actly four (five) U-orbits of right ideals.

∗ If n ≥ 4, then R has an infinite number of U-

orbits of right ideals.
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Example. Let L be a field, let F = L(x1, x2, . . .)
be the field of rational functions in infinitely many
variables x1, x2, . . ., and let σ : F → F be the L-
endomorphism defined by σ(xi) = xi

2 for every i ≥
1. Let R = F[y;σ]/(y2). Then

∗ R is left, but not right artinian.

∗ R has exactly three U-orbits of elements, of
principal left ideals, of left ideals, and of prin-
cipal right ideals.

∗ R has an infinite number of U-orbits of right
ideals.
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Example. Let R be the same as in the previous

example, let Rop be the opposite ring, and let S =

R×Rop. Then

∗ S is semiprimary, but neither left nor right

noetherian.

∗ S has exactly nine U-orbits of elements, of prin-

cipal left ideals, and of principal right ideals.

∗ S has an infinite number of U-orbits both left

and right ideals.
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Example. Let K be an infinite subfield of a field F,

and let R =

[
F F
0 K

]
be the ring of matrices of the

form

[
x y
0 z

]
, where x, y ∈ F and z ∈ K, with formal

matrix multiplication. Then

∗ R has exactly five U-orbits of elements, of prin-

cipal left ideals, and of principal right ideals.

∗ R has exactly six U-orbits of left ideals.

∗ If [F : K] = 1, then R has exactly six U-orbits

of right ideals.

∗ If [F : K] = 2 (respectively, [F : K] = 3), then R

has exactly eight (ten) U-orbits of right ideals.

∗ If [F : K] ≥ 4, then R has an infinite number of

U-orbits of right ideals.
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Example. Let F be an infinite field, let D =

diag(F,F) be the 2 × 2 diagonal matrix ring, let

M = M2(F) be the 2 × 2 matrix ring, and let

R =

[
D M
0 D

]
. Then

∗ R is an 8-dimensional F-algebra.

∗ R has a finite number of U-orbits of ideals.

∗ R has an infinite number of U-orbits of principal

left ideals.
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